Complete Local Binary Pattern for Representation of Facial Expression Based on Curvelet Transform

نویسنده

  • Praveen Kumar
چکیده

In this paper, we proposed a technique for facial expression representation based on combination of Curvelet Transform and Complete Local Binary Pattern (CLBP). The curvelet transform offers improved directional capability, better ability to represent edges and other singularities along curves as compared to other traditional multiscale transforms. Hence, we transform original face images to frequency domain at a specific scale and orientation using curvelet transform. Rotation invariant uniform binary patterns are extracted from the approximate sub-band using CLBP method to represent facial expressions, which form the feature vector. The efficacy of the proposed method for facial expression representation is evaluated based on expression recognition carried out using a benchmark database such as JAFFE. The recognition is performed using a Chi-square distance measure with a nearest neighbor classifier. The experimental results show that our method outperforms LBP based approach and curvelet based LBP approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Facial expression recognition based on Local Binary Patterns

Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

Face recognition based on curvelets and local binary pattern features via using local property preservation

In this paper, we propose a new feature extraction approach for face recognition based on Curvelet transform and local binary pattern operator. The motivation of this approach is based on two observations. One is that Curvelet transform is a new anisotropic multi-resolution analysis tool, which can effectively represent image edge discontinuities; the other is that local binary pattern operator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014